Quadratics Cheat Sheet

Standard Form: $y=A x^{2}+B x+C$

$$
\text { Vertex Form: } y=A(x-h)^{2}+k
$$

> Vertex Form gives you the vertex of the parabola. **Hints the word vertex for.**

Vertex is: $(\mathrm{h}, \mathrm{k})^{* * *}$ you take the opposite of h$)$
Example 1:

$$
Y=(x+3)^{2}-2 \quad \text { vertex is: }(-3,-2)
$$

Axis of Symmetry: vertical line that splits the parabola in half. IT IS

ALWAYS THE X-VALUE OF VERTEX

- Always write it as $x=$
- The axis of symmetry for the example above is $x=-3$
$>\mathrm{H}$ tells us which way the graph moves horizontally (left and right).
- In the example above the graph has a: horizontal shift to the left 3.
$>$ K tells us which way the graph moves vertically (up and down)
- In the example above the graph is transformed: vertical shift down 2.
$>$ If there is a negative out front. (A is negative) It causes the graph to open down. We call that being reflected across/about the x-axis.
- Example: $y=-(x+3)^{2}-2$
- The graph is reflected across x-axis. It opens down.
$>$ If A is greater than 1 the graph is stretched vertically
\Rightarrow If A is less than 1 the graph is shrunk vertically
> Y - Intercept- where the graph crosses the y -axis. Always written as a point. For example (0,0). The x-value will always be zero. The Y-Intercept is also the C in the standard form $A x^{2}+B x+C$.
> Domain: All of the x-values of the graph. If the graph does not have endpoints then the domain will be all real numbers. You can write it 3 ways.

1. Set Notation: $(-\infty, \infty)$
2. Interval Notation: $-\infty<x<\infty$

3. All Reals

> Range: All of the y-values of the graph. If the graph opens up the range will go from y-value of vertex to positive ∞. For Example: Vertex is: $(2,3)$. Range is:

- Set Notation: $[3, \infty)$.
- Interval Notation: $3 \leq \mathrm{y}<\infty$
$>\mathrm{X}$ - Intercept (s). This is where the graph crosses the x -axis. There may be none, one or 2 depending upon the graph. ${ }^{* *}$ Always write as ordered pairs**
> Maximum and Minimum Values- The is the highest or lowest point of the graph located at the vertex. If the graph opens up you will have a minimum value. If the graph open down you will have a maximum value.
$>$ Rate of Change- To determine the rate of change, find the slope of the line that passes through two given points on the function.
> Intervals of Increase and Intervals of Decrease- You will fill in below

Everything I Need to Know about Quadratics...But Was Afraid to Ask!

Standard Form

If you want... And you have... Then do this

Vertex Form$y=a(x-h)^{2}+k$	Standard Form $y=a x^{2}+b x+c$	complete the square or solve for zeros or partial factor and use to calculate vertex, "a" will be the same
	Factored Form $y=a(x-s)(x-t)$	expand to standard form then convert to vertex form or solve for zeros and use to calculate vertex, "a" will be the same
Standard Form	Vertex Form $y=a(x-h)^{2}+k$	> expand
$y=a x^{2}+b x+c$	Factored Form $y=a(x-s)(x-t)$	> expand
Factored Form	Vertex Form $y=a(x-h)^{2}+k$	convert to standard form, then convert to factored form or solve for zeros and substitute into factored form, "a" will be the same
$y=a(x-s)(x-t)$	Standard Form $y=a x^{2}+b x+c$	factor, if possible or use quadratic formula to find zeros and substitute into factored form

		or may not have factored form if there are no real roots
to graph	Vertex Form $y=a(x-h)^{2}+k$	read vertex/transformations directly from equation $\checkmark \mathrm{h}$ is horizontal $\checkmark \mathrm{k}$ is vertical \checkmark a is reflection and stretch/compression for improved accuracy, consider finding y-intercept or applying step pattern.
	Standard Form $y=a x^{2}+b x+c$	solve for x-intercepts and y-intercept or solve for vertex and y-intercept
	$\begin{aligned} & \text { Factored Form } \\ & y=a(x-s)(x-t) \end{aligned}$	> read zeros from equation, solve for y-intercept or vertex

If you want...
And you have...
Then do this

y-intercept	Vertex Form $y=a(x-h)^{2}+k$	$>$ set $x=0$ and solve for y
	Standard Form $y=a x^{2}+b x+c$	$>$ set $x=0$ and solve for y or just look for c
	$\begin{aligned} & \text { Factored Form } \\ & y=a(x-s)(x-t) \end{aligned}$	$>$ set $x=0$ and solve for y
vertex, max/min, optimal value	Vertex Form $y=a(x-h)^{2}+k$	$>$ read the vertex right from the equation: (h, k)
	Standard Form $y=a x^{2}+b x+c$	convert to vertex form or determine the zeros and use $\frac{s+t}{2}$ to get x -coordinate of vertex (axis of symmetry), substitute this x to get the y coordinate or

		use $x=-\frac{b}{2 a}$ to get x-coordinate of vertex, substitute this x to get the y-coordinate or partial factor to get x-coordinate of vertex (axis of symmetry), substitute this x to get the y-coordinate
	$\begin{aligned} & \text { Factored Form } \\ & y=a(x-s)(x-t) \end{aligned}$	use the zeros and $\frac{s+t}{2}$ to get x-coordinate of vertex (axis of symmetry) substitute this x to get the y-coordinate or convert to standard form then complete the square
x-intercepts, zeros, roots	Vertex Form $y=a(x-h)^{2}+k$	convert to standard form then factor or use quadratic formula or set $y=0$ then solve for x using inverse operations
	Standard Form $y=a x^{2}+b x+c$	$>$ factor if possible or > use quadratic formula or $>$ may not have real roots
	$\begin{aligned} & \text { Factored Form } \\ & y=a(x-s)(x-t) \end{aligned}$	$>$ read the zeros right from the equation: s \& t
the number of zeros	Vertex Form $y=a(x-h)^{2}+k$	analyze location of vertex and opening direction, draw conclusions
	Standard Form $y=a x^{2}+b x+c$	$>$ use discriminant: $\mathrm{D}<0, \mathrm{D}=0, \mathrm{D}>0$
	$\begin{gathered} \text { Factored Form } \\ y=a(x-s)(x-t) \end{gathered}$	$>$ zeros are given in this form

