Quadratics Cheat Sheet

Standard Form: $y = Ax^2 + Bx + C$

Vertex Form: $y = A(x - h)^2 + k$

➤ Vertex Form gives you the vertex of the parabola. **Hints the word vertex for.**

Vertex is: (h, k) ***you take the opposite of h)

Example 1:

 $Y = (x + 3)^2 - 2$

vertex is: (-3, -2)

> Axis of Symmetry: vertical line that splits the parabola in half. IT IS

ALWAYS THE X-VALUE OF VERTEX

- Always write it as x =
- \circ The axis of symmetry for the example above is x = -3
- > H tells us which way the graph moves horizontally (left and right).
 - o In the example above the graph has a: horizontal shift to the left 3.
- K tells us which way the graph moves vertically (up and down)
 - In the example above the graph is transformed: vertical shift down2.
- ➤ If there is a negative out front. (A is negative) It causes the graph to open down. We call that being reflected across/about the x-axis.
 - o Example: $y = -(x + 3)^2 2$
 - o The graph is reflected across x-axis. It opens down.
- ➤ If A is greater than 1 the graph is stretched vertically
- ➤ If A is less than 1 the graph is shrunk vertically
- Y- Intercept- where the graph crosses the y-axis. Always written as a point. For example (0,0). The x-value will always be zero. The Y-Intercept is also the C in the standard form $Ax^2 + Bx + C$.
- ➤ Domain: All of the x-values of the graph. If the graph does not have endpoints then the domain will be all real numbers. You can write it 3 ways.
 - 1. Set Notation: $(-\infty, \infty)$
 - 2. Interval Notation: $-\infty < x < \infty$

3. All Reals

- Range: All of the y-values of the graph. If the graph opens up the range will go from y-value of vertex to positive ∞. For Example: Vertex is: (2,3). Range is:
 - Set Notation: $[3, \infty)$.
 - Interval Notation: $3 \le y < \infty$
- > X- Intercept (s). This is where the graph crosses the x-axis. There may be none, one or 2 depending upon the graph. **Always write as ordered pairs**
- Maximum and Minimum Values- The is the highest or lowest point of the graph located at the vertex. If the graph opens up you will have a minimum value. If the graph open down you will have a maximum value.
- ➤ Rate of Change- To determine the rate of change, find the slope of the line that passes through two given points on the function.
- Intervals of Increase and Intervals of Decrease- You will fill in below

Everything I Need to Know about Quadratics...But Was Afraid to Ask!

Standard Form

If you want...

And you have...

Then do this

	Standard Form	complete the square or
Vertex Form	$y = ax^2 + bx + c$	 solve for zeros or partial factor and use to calculate vertex, "a" will be the same
$y = a(x-h)^2 + k$	Factored Form	expand to standard form then convert to vertex form or
	y = a(x-s)(x-t)	solve for zeros and use to calculate vertex, "a" will be the same
	Vertex Form	
Standard Form	$y = a(x-h)^2 + k$	➤ expand
$y = ax^2 + bx + c$	Factored Form	
	y = a(x-s)(x-t)	➤ expand
	Vertex Form	> convert to standard form, then convert to factored form or
Factored Form	$y = a(x-h)^2 + k$	solve for zeros and substitute into factored form, "a" will be the same
y = a(x-s)(x-t)	Standard Form	> factor, if possible or
	$y = ax^2 + bx + c$	use quadratic formula to find zeros and substitute into factored form

		or
		➤ may not have factored form if there are no real roots
to graph	Vertex Form $y = a(x - h)^2 + k$	 ▶ read vertex/transformations directly from equation ✓ h is horizontal ✓ k is vertical ✓ a is reflection and stretch/compression for improved accuracy, consider finding y-intercept or applying step pattern.
	Standard Form	> solve for x-intercepts and y-intercept or
	$y = ax^2 + bx + c$	> solve for vertex and y-intercept
	Factored Form	
	y = a(x - s)(x - t)	> read zeros from equation, solve for y-intercept or vertex
1		
If you want	And you have	Then do this
If you want	, , , , ,	Then do this
If you want	And you have	Then do this
	And you have Vertex Form	
If you want y-intercept	And you have Vertex Form $y = a(x-h)^2 + k$	
	And you have Vertex Form $y = a(x - h)^2 + k$ Standard Form	ightharpoonup set $x = 0$ and solve for y
	And you have Vertex Form $y = a(x-h)^2 + k$ Standard Form $y = ax^2 + bx + c$	ightharpoonup set $x = 0$ and solve for y

		 use x = -b/2a to get x-coordinate of vertex, substitute this x to get the y-coordinate or partial factor to get x-coordinate of vertex (axis of symmetry), substitute this x to get the y-coordinate
	Factored Form $y = a(x-s)(x-t)$	> use the zeros and $\frac{s+t}{2}$ to get x-coordinate of vertex (axis of symmetry) > substitute this x to get the y-coordinate or
	Vertex Form	 convert to standard form then complete the square convert to standard form then factor or use quadratic
x-intercepts, zeros, roots	$y = a(x-h)^2 + k$	formula or
		> set $y = 0$ then solve for x using inverse operations
	Standard Form	factor if possible or
	$y = ax^2 + bx + c$	use quadratic formula or
		> may not have real roots
	Factored Form $y = a(x-s)(x-t)$	> read the zeros right from the equation: s & t
the number of zeros	Vertex Form $y = a(x-h)^2 + k$	 analyze location of vertex and opening direction, draw conclusions
	Standard Form $y = ax^2 + bx + c$	> use discriminant: D < 0, D = 0, D > 0
	Factored Form $y = a(x-s)(x-t)$	> zeros are given in this form